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Abstract 

Background: 

The evidence linking long-term exposure to air pollution and development of chronic obstructive 

pulmonary disease (COPD) is still controversial. Furthermore, most studies have investigated 

associations with particulate matter (PM) and nitrogen dioxide (NO2), disregarding their emission 

source and other relevant air pollutants, such as ultrafine particles (UFP) and elemental carbon (EC). 

Objectives: 

This study aimed to assess associations between long-term residential exposure to PM2.5, NO2, UFP, 

and EC and risk of COPD, distinguishing the effects of air pollution from local traffic and other 

sources. 

Methods: 

We pooled data from two large Danish cohorts - the Diet, Cancer, and Health cohort and the Danish 

National Health Survey. For all participants (N = 159,769), we estimated long-term air pollution 

exposure to total, local traffic, and other contributions, based on complete address histories. We used 

Cox proportional hazards models to estimate associations between 10-year time-weighted averaged 

air pollution and incident COPD, adjusting for demographic, socioeconomic, and lifestyle factors, 

including smoking. We evaluated possible modification of these associations by sex, smoking status, 

and previous asthma diagnosis. 

Results: 

Long-term exposures to PM2.5, NO2, UFP, and EC were associated with higher risk of COPD. The 

highest hazard ratio (HR) per interquartile range of total contributions was observed for PM2.5 (HR: 

1.11 [95% confidence interval: 1.05, 1.17]), followed by NO2 (1.08 [1.04, 1.13]), UFP (1.05 [0.99, 

1.11]), and EC (1.02 [1.00, 1.05]), after full adjustment. PM2.5 from other sources than local traffic 

was more strongly associated with COPD than PM2.5 from local traffic, while for UFP and EC, the 

contributions from local traffic seemed most harmful. Effect modification analyses showed stronger 

associations among women, never smokers, and those with an asthma diagnosis. 

Discussion: 

Our findings suggest that air pollution from local traffic and other sources contribute to COPD risk, 

with variations depending on the pollutant type. Further research is needed to validate these findings 

across different populations and geographical settings.  
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1. Introduction 

Chronic obstructive pulmonary disease (COPD) is a highly prevalent and debilitating condition 

characterized by persistent airflow obstruction and progressive, heterogeneous respiratory symptoms. 

The global number of COPD cases is expected to increase by 23% over the next 15 years, reaching 

nearly 600 million patients worldwide by 2050.1 COPD therefore places an increasingly heavy burden 

on the healthcare system. 

While smoking is the primary risk factor for COPD, ambient air pollution is also believed to play a 

significant role in its pathogenesis, by triggering airway inflammation and oxidative stress in 

bronchial epithelial cells.2 Many studies have investigated respiratory health effects of acute increases 

in air pollution levels, such as short-term peaks caused by wildfires and extreme weather events.3,4 

These studies have consistently demonstrated that short-term exposure to air pollution is linked to an 

increased risk of COPD exacerbation,5,6 hospitalization,6–8 and mortality.6,7 

The evidence on long-term air pollution exposure and development of COPD, however, is still limited 

and in general more challenging to establish.3 A meta-analysis covering six prospective studies found 

that a 10 μg/m³ increase in particulate matter (PM) with an aerodynamic diameter of 2.5 μm or less 

(PM2.5) was associated with an 18% increase in COPD incidence (95% confidence interval (CI): 13%, 

23%).9 This meta-analysis furthermore found suggestions of an association with nitrogen dioxide 

(NO2), although these results are based on a limited number of studies.9 Other cohort studies not 

included in this meta-analysis showed quite inconsistent results for both PM2.5 and NO2.
10–15  

Previous studies suggested that the adverse health effects of PM exposure can vary depending on the 

type of PM and its characteristics, such as size, density, and composition.16,17 Ultrafine particles 

(UFPs), a subset of PM with diameters less than 0.1 µm, can penetrate deeper into the lungs compared 

to larger particles like PM2.5 and PM10, allowing them to reach the alveoli more easily and remain in 

the lungs for extended periods.18 Elemental carbon (EC) refers to the pure carbon component present 

in PM. It is typically formed from incomplete combustion processes and serves as an indicator of 

local combustion sources, such as traffic, industry, and wood-burning, therefore being a relevant 

indicator of air quality.19 The few studies that have investigated EC (or black carbon) in relation to 

COPD showed inconsistent results.12,14,20 To our knowledge, only one longitudinal study assessed 

long-term UFP exposure and incident COPD, finding indications of an association.21  

The impact of particulate air pollution on health, including the respiratory system, may vary 

depending on the emission source, as particles from different sources have been shown to differ in 

chemical composition, particle size, and toxicity.22,23 For instance, traffic-related particles tend to 

have high oxidative potential, likely due to metals from engine and brake abrasion,22 which may 

enhance their inflammatory effects in the lungs. PM from wood combustion appears to have a 

stronger impact on respiratory health than on cardiovascular health, possibly due to its role in 

impairing lung immune defense.22,24,25 Furthermore, a global ecological study suggested that 

secondary aerosols were the strongest contributors to chronic respiratory diseases, including COPD. 

Therefore, evaluating associations based on emission sources, such as those from traffic versus non-

traffic sources, can enhance our understanding of which air pollution constituents contribute to 
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COPD. Such information may be an important input in designing more effective policy measures. 

However, very few epidemiological studies have conducted a comparative analysis of the impact of 

air pollution from different sources on COPD development, e.g. Hendryx et al. (2019).26 

We aimed to investigate associations between long-term residential exposure to different types of PM 

(PM2.5, EC and UFP) and NO2 and risk of COPD using pooled, harmonized data from two large, 

questionnaire-based Danish cohorts. For all air pollutants, we assessed associations with total, local 

traffic, and other contributions (i.e. non-traffic sources and non-local traffic sources). 

2. Methods 

Study population 

This study was based on two large Danish cohorts: The Diet, Cancer, and Health (DCH) cohort and 

the Danish National Health Survey (DNHS).  

The DCH cohort recruited residents from the two largest cities in Denmark, Aarhus and Copenhagen, 

between 1993 and 1997.27 Participants had to be born in Denmark, cancer free at the time of 

recruitment, and aged 50-64 years old. In total, 57,053 persons (response proportion of 35%) were 

enrolled into the study and completed a comprehensive self-administered, interviewer-checked 

questionnaire on diet, lifestyle (e.g. current and previous smoking habits, physical activity, alcohol 

intake), and health upon study entry. The study was conducted according to the Declaration of 

Helsinki and approved by local ethical authorities, and all participants provided informed consent. 

In the DNHS, conducted in 2010 and 2013, around 300,000 adults (≥16 years) were invited each year 

to participate by completing a detailed questionnaire on lifestyle and physical and mental health, 

using a mixed-mode (paper/web) approach.28 The participants were randomly selected from each of 

Denmark's five administrative regions, along with a nationwide sample, resulting in six distinct and 

exclusive subsamples covering the entire country. Response proportions were 60% and 54% for 2010 

and 2013, respectively, resulting in 339,922 respondents. Individuals who responded to the 

questionnaire in both 2010 and 2013 were included only once in our study, with their responses from 

2010 considered as their baseline information. To align with the population characteristics of the 

DCH cohort, we have in the present study only included DNHS respondents aged 55 years and older. 

The study was approved by the Danish Data Protection Agency. 

We excluded all participants who had COPD at baseline, who had incomplete (i.e. more than 20% 

missing) address history and/or exposure information before study entry, and those with missing 

covariate data. 

Questionnaire information from the two cohorts (collected at baseline) were harmonized and pooled. 

Participants in the pooled cohort were subsequently linked to national administrative and health 

registries using unique personal identification numbers that all residents in Denmark have.29 

Outcome definition 

We identified COPD cases through linkage with the National Patient Register, which holds 

nationwide information on inpatient diagnoses since 1977 as well as outpatient diagnoses since 
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1994.30 We defined cases of COPD as individuals who received a primary or secondary diagnosis 

coded as 491 or 492 according to the International Classification of Diseases, Eighth Edition (ICD-

8), or as J42, J43, or J44 according to the Tenth Edition (ICD-10). All persons with a COPD diagnosis 

before baseline were considered prevalent cases and excluded from our study population. 

Exposure 

We retrieved residential address-history for all participants in the pooled cohort from 1990 until 

censoring using the Danish Civil Registration System.29 For all corresponding addresses, we 

modelled outdoor air pollution concentrations of PM2.5, NO2, UFP, and EC using the Danish 

DEHM/UBM/AirGIS modelling system.31–33 This system calculates air pollution concentrations  at 

the individual address level based on three different models, covering different geographical scales: 

1) regional background, calculated using the Danish Eulerian Hemispheric Model (DEHM) to assess 

long-range transport of air pollution on the Northern Hemisphere. The DEHM is based on detailed 

atmospheric chemistry and deposition processes, as well as input data on emissions inventories and 

meteorological aspects;34 2) local background, simulated using the Urban Background Model (UBM) 

on a 1 km x 1 km grid resolution covering the entire Denmark. Together with the DEHM, the UBM 

relies on meteorological data generated by the Weather Research and Forecasting model,35 which is 

routinely executed alongside DEHM and UBM as part of the modeling framework;36,37 and 3) local 

street-level pollution, simulated using the Operational Street Pollution Model (OSPM), which 

incorporates factors such as traffic and street characteristics, building layouts, emission rates, and 

meteorological conditions.31,32 The DEHM/UBM/AirGIS modelling system have been validated, 

showing correlation coefficients ranging from 0.67 to 0.85 for PM₂.₅, 0.77 to 0.79 for EC, and 0.60 

to 0.80 for NO₂ when comparing modeled and observed concentrations across various locations and 

measurement periods.38,39 

For all Danish addresses, the hourly concentrations of PM2.5, NO2, and EC were subsequently 

aggregated as monthly averages over the period of 1990-2017. Recently, modelling of particle 

number concentrations was added to the modelling system, therefore providing an estimate of UFP 

address-level concentrations covering the entire period from 1990 to 2017.40,41 This was done by 

extending the DEHM/UBM/AirGIS modelling  system with the M7 particle dynamics module 

(Vignati et al., 2004), which simulates key physical transformation processes such as nucleation, 

coagulation, and condensation.42 Modelled UFP concentrations were validated against measured UFP 

concentrations for annual averages, showing Pearson correlation coefficients of 0.86 for UFP at a 

regional-scale station, 0.87 for an urban-scale station and 0.95 for a street-scale station.41 

Using comprehensive inventories for Denmark based on standardized, internationally recognized 

emission categories denominated as Selected Nomenclature for Air Pollution (SNAP) codes, we 

disaggregated total air pollution concentrations into source-specific contribution.43 An overview of 

the SNAP categories used in Danish emission inventories is provided in Table S1. Emissions from 

local road traffic (i.e. SNAP code 07 and up to a distance of 25 km from the address location) were 

used to calculate the “traffic contribution”; whereas emissions from non-traffic sources and secondary 

long-range transported traffic emissions were used to calculate the “non-traffic contribution”, 
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including e.g. industrial activities, agriculture, non-industrial combustion plants, waste treatment, 

traffic from more than 25 km distance and other mobile sources such as shipping.44 

Monthly address-specific air pollutant concentrations (PM2.5, NO2, UFP, and EC) were linked to 

individual address histories for the entire study population. For each cohort member, we calculated 

time-weighted 10-year running means, considering exposure at all addresses and accounting for the 

exact duration each individual resided at each address. We calculated both total, local traffic and non-

traffic concentrations for all four pollutants. 

Covariates 

Covariates were selected based on: 1) existing literature, taking into consideration plausible risk 

factors for COPD (e.g. socioeconomics and education,45 dietary patterns,46,47 smoking,48 and physical 

activity,49 that are also linked to air pollution exposure;50–52 and 2) the data availability after 

harmonization across the two cohorts.  

From the registers at Statistics Denmark, we obtained annual, time-varying information for both 

cohorts across all study years on the following individual-level covariates: cohabiting status 

(married/cohabiting, single/widow/divorced); highest-attained education (mandatory, 

secondary/vocational, medium/long); income (based on quintiles defined for the entire Danish 

population, stratified by sex and year, i.e. low (Q1); medium (Q2-Q4); high (Q5); and occupational 

status (white collar, blue collar, unemployed/retired). We also gathered information on three area-

level covariates calculated for all 2,160 parishes in Denmark, i.e. proportion of the population in each 

parish with low income (1st quartile), with only basic education, and with criminal record (given in 

percentage). All variables obtained from Statistics Denmark were time-dependent (i.e. subject to 

change over time), updated annually, and available for all study years. 

Lifestyle information was retrieved from the baseline questionnaire used for each cohort. Since the 

questionnaires were different for both cohorts, the data collected was harmonized. Table S2 shows 

the original questions and how variables resulted after harmonization.  After harmonization of 

questionnaire data, the following covariates were used: smoking status (never, former, current); 

smoking intensity among current smokers (g tobacco/day), alcohol intake (g/day), alcohol abstainers 

(yes, no), fruit and vegetable intake (no intake/very low, low, medium, high), and physical activity 

(none/low, medium, high). 

Statistical analysis  

We followed the DCH cohort from January 1, 2000, enabling at least 10-years of exposure history 

for all participants. For the DNHS cohort, follow-up started from collection of questionnaire data 

(January 2010 or January 2013) or 55 years of age, whichever came later. Follow-up ended at COPD 

diagnosis, missing address, emigration, death, or 31 December 2017, whichever came first (Figure 

S1). We used Cox proportional hazards models with age as underlying time to assess the association 

between 10-year time-weighted averaged exposure to air pollution and risk of incident COPD. The 

time-weighted 10-years running means were entered as time-varying variables into the Cox model. 

Risk estimates were calculated per interquartile range (IQR) increase in total, traffic, and non-traffic 

contributions of each air pollutant (PM2.5, NO2, UFP, and EC) to allow for direct comparison of risk 
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estimates across pollutants. The calculation of IQRs were based on the 10-year running averages 

estimated for each cohort participant over the entire study period, i.e. from beginning of follow-up 

until censoring. 

We calculated hazard ratios (HR) between COPD and air pollution using four models with increasing 

level of adjustment: Model 1, adjusted for sex (male, female), age (years), calendar year (categorical 

variable with two-year intervals) and cohort (strata); Model 2, further adjusted for socio-demographic 

information (cohabiting status, education, income, occupation and area-level covariates); Model 3, 

further adjusted for smoking information (smoking status and smoking intensity); Model 4, further 

adjusted for lifestyle (alcohol intake, alcohol abstinence, fruit intake, vegetable intake, and physical 

activity). All socio-demographic variables, except for sex, were included as time-varying variables, 

being updated every year. In contrast, smoking and lifestyle information, collected only at baseline, 

remained constant in our models throughout follow-up. Model 4 was selected a priori as our primary 

model as it includes the most comprehensive adjustment for potential confounders, reducing the risk 

of residual confounding and strengthening causal interpretation. This model was used in the 

subsequent described analyses.  

We evaluated the shape of the associations between each air pollutant (total, traffic, and non-traffic 

contributions) and COPD, by fitting natural cubic splines with three degrees of freedom. We 

disregarded the upper and lower 5% of the exposure range, since CIs for extreme exposures were too 

wide to provide reliable insights. In addition to reporting results per IQR increase, we also assessed 

associations per fixed increment, where exposure variables were scaled by predefined fixed units to 

facilitate comparison with previous studies. The specific increments used were 5 and 10 μg/m3 for 

PM2.5, 10 μg/m3 for NO2, 10,000 particles/cm3 for UFP, and 1 μg/m3 for EC. We also performed a 

sensitivity analysis in which COPD cases were identified exclusively based on a specific COPD 

diagnosis (ICD-10 code J44). 

We also assessed the associations between COPD and PM2.5, NO2, UFP, and EC using two-pollutant 

models, testing combinations of pollutants within the same source category (i.e. total, traffic, and 

non-traffic).We performed effect modification analyses to investigate whether the association 

between PM2.5, NO2, UFP, and EC (total, traffic, and non-traffic contributions) and COPD differed 

according to sex, smoking status (never smoker, previous smoker, and current smoker) or a previous 

diagnosis for asthma. This analysis was done by the including an interaction term between each 

exposure variable and these three covariates.   We identified asthma diagnoses in the National Patient 

Register,30 using the codes 493 (ICD-8) or J45 (ICD-10). We followed up for diagnosis of asthma 

throughout the entire study period, with individuals classified as cases from their first recorded 

diagnosis onward. Persons with an asthma diagnosis before baseline were considered cases from the 

start of follow-up. 

Analyses were performed in SAS (version 9.4, SAS Institute Inc.), apart from natural splines and 

correlation matrix, which were built in R (version 4.3.2). 

3. Results 
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Out of the 57,053 DCH participants and 339,922 DNHS respondents, the pooled study population 

comprised 159,769 individuals, of whom 8,456 developed COPD during follow-up. The inclusion 

and exclusion criteria for the DCH and DNHS cohorts are detailed in Figure 1, which illustrates the 

selection of the final study population. 

Pearson’s correlation coefficients between PM2.5, NO2, UFP, and EC (total, traffic and non-traffic 

contributions) ranged from 0.28 to 0.99 (Figure 2). We found strong correlations between the air 

pollutants (total concentrations) and their source-specific contributions. The traffic contributions 

were also strongly correlated with each other.  

Table 1 presents the baseline sociodemographic characteristics and air pollution exposure for the 

pooled study population and for each cohort separately. Compared to the DCH cohort, DNHS 

respondents were generally older, had lower income, smoked less, drank less, exercised more, and 

consumed more fruits. Air pollution levels, especially from traffic, were lower in DNHS. Across all 

pollutants, non-traffic-related levels were generally higher than traffic-related levels, with the most 

pronounced differences observed for PM2.5 (Table 1 and Figure S2). 

Results from the fully adjusted model (Model 4) showed that all air pollutants (total contribution) 

were associated with a higher risk of COPD, with HRs per interquartile range (IQR) of: 1.11 (95% 

CI: 1.05, 1.17) per 2.33 µg/m3 of PM2.5; 1.08 (1.04, 1.13) per 9.25 µg/m3 of NO2; 1.05 (0.99, 1.11) 

per 5,737 particles/m3 of UFP; and 1.02 (1.00, 1.05) per 0.34 µg/m3 of EC (Table 2). HRs remained 

virtually unchanged when COPD cases were defined exclusively by the specific ICD-10 code J44 

(Table S3). When comparing HRs across the adjustment models, we found that adjustment for 

sociodemographic covariates generally resulted in modest changes in HRs, but with no clear pattern 

regarding the direction of the change. In contrast, further adjustment for smoking status and intensity 

lowered HRs, while further adjustment for lifestyle information had little impact on the HRs. HRs 

per fixed increment are shown in Table S4. 

In multi-pollutant models (Tables S5–S7), PM₂.₅ and NO₂ emerged as the strongest contributors to 

increased COPD risk. NO₂ was the predominant pollutant in traffic-related contributions (Table S6), 

while PM₂.₅ played the main role in non-traffic-related exposure (Table S7). However, it is important 

to note that these pollutants are highly correlated, which makes interpretation difficult and 

furthermore may affect the stability of the models. The associations approached linearity for total 

PM2.5 and NO2, showing higher HRs with increased exposure levels and a slight levelling-off 

observed for higher exposures (Figure 3A and Figure 3D). Although associations were weaker, both 

total UFP and EC followed a near-linear trend (Figure 3G and Figure 3J). 

We found that both traffic and non-traffic PM2.5 were associated with a higher risk of COPD, but HRs 

for non-traffic PM2.5 were substantially higher than HRs for traffic PM2.5 (Table 2). The associations 

with non-traffic PM2.5 followed an inverted U-shape, showing a reduction in risk at higher exposure 

levels, while the associations with traffic PM2.5 remained largely leveled off across most of the 

exposure range (Figure 3B-C). For NO2, we observed that both traffic and non-traffic contributions 

were associated with higher COPD risk, with similar size HRs per IQR (Table 2) but considerably 

different HRs per fixed increase (Table S4). Findings for NO2 revealed monotonic exposure-response 

relationships, although for non-traffic NO2, there were indications of a levelling off at higher exposure 
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levels (Figure 3E-F). For UFP and EC, we observed that the traffic contributions were associated with 

a higher risk of COPD following a monotonic exposure-response relationship, though for EC the 

associations levelled off at higher concentrations (Figure 3H and 3K). In contrast, no associations 

were observed for non-traffic UFP and EC contributions (Table 2). 

Effect modification analyses showed stronger associations between air pollution (all four pollutants) 

and COPD among females (Figure 4) and among never and current smokers, whereas among former 

smokers either no association or risk estimates below 1 were observed (Figure 4, total contributions; 

similar results were observed for the traffic and non-traffic contributions Figure S3). Furthermore, 

we observed higher HRs between air pollution and COPD among individuals with a previous asthma 

diagnosis compared to those without an asthma diagnosis (Figure 4 and Figure S4). Precise HRs and 

test for interactions are shown in Tables S8-S10. 

4. Discussion 

In this pooled cohort study, long-term exposure to air pollution was associated with a higher risk of 

COPD. The highest risk estimates per IQR were observed for PM2.5, followed by NO2, UFP, and EC. 

For UFP and EC, the higher COPD risk was primarily attributed to air pollution from local traffic, 

while for PM2.5, the contributions from other sources yielded the highest risk estimates per IQR 

change. Adjusting for smoking status and intensity lowered HRs, highlighting the importance of 

considering smoking when investigating the effects of air pollution on COPD. We found stronger 

associations for people with a previous asthma diagnosis and among former smokers no association 

was observed. 

A 2021 meta-analysis on air pollution and incident COPD reported a pooled RR of 1.18 (95% CI: 

1.13, 1.23) per 10 µg/m³ increase in PM2.5 based on six cohort studies.9 We observed a considerably 

higher risk estimate, with a HR of 1.58 (95% CI: 1.25, 2.00) per 10 µg/m³ PM2.5 increase. The stronger 

associations observed in our study may be attributed to the high temporal and spatial resolution of 

our exposure assessment methodology, which likely results in more precise modelled exposure levels. 

Our cohort also comprises an older population compared to other studies,11,21,53,54 and several studies 

have demonstrated that PM exposure has a greater effect on increasing hospital admissions for 

respiratory diseases in the elderly compared to younger individuals.8,55,56 Moreover, Denmark is 

characterized by having low-level air pollution, as well as other Scandinavian countries. A meta-

analysis of PM2.5 and mortality have indicated a supralinear relationship, with a steeper risk increase 

at lower exposure levels,57 and one could speculate that a similar shape exposure-response 

relationship exists for PM2.5 and COPD, which would explain the higher risk estimates in our study. 

Interestingly, a study pooling data from three Scandinavian cohorts (ELAPSE study), including the 

DCH cohort, found a HR of 1.17 (95% CI: 1.06, 1.29) per 5 µg/m³ increase in PM2.5, thus more 

comparable to the HR of 1.26 per 5 µg/m³ observed in the present study.12  

PM consists of a complex mixture of particles with different physical and chemical properties, and 

therefore its composition and toxicity can be largely dependent on the emission source.22,23 We found 

a stronger association with COPD for PM2.5 originated from non-traffic and regional sources 

compared to local traffic sources, suggesting a need to prioritize mitigation strategies targeting non-
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traffic emissions., e.g. residential wood burning and industrial activities Additionally, although results 

from two-pollutant models should be interpreted with caution, we found PM2.5 to be the predominant 

pollutant in non-traffic contributions. PM2.5 non-traffic constitutes the major fraction of total PM2.5 

emissions in Denmark. Since this study includes participants living across Denmark including rural 

areas, long-range transported air pollution, which primarily originates from non-traffic sources, plays 

a dominant role in overall exposure (Figure S2), with nearly all study participants exposed to 

concentrations exceeding 5 µg/m³—the WHO air quality guideline for PM₂.₅. The primary 

contributors for non-traffic emissions include non-industrial combustion plants, such as biomass 

burning for residential heating, as well as other mobile and machinery sources, including 

shipping.58,59 In agreement, Penning et al. reported that PM2.5 from biomass burning was associated 

with increased emergency department visits for respiratory conditions, including COPD, while no 

positive associations were observed for traffic-related sources (i.e., gasoline and diesel-fueled 

vehicles).60 A British study also found no association between PM2.5 originating from traffic and 

incident COPD.13 However, other studies have reported opposite results, indicating associations 

between traffic-related emissions and hospitalizations for COPD.61,62 Additionally, several studies 

have linked short-term exposure to traffic-related PM with worsening symptoms and lung function 

decline in COPD patients,4,63,64 still highlighting potential adverse effects of traffic PM on the 

respiratory system.  

Based on five cohort studies, the 2021 meta-analysis found a RR of 1.07 (1.00, 1.16) per 10 µg/m³ 

increase in NO2 
9 which is in line with the results obtained in the ELAPSE study (HR: 1.11; CI: 1.06, 

1.16 per 10 µg/m3 NO2), as well as the results of the present study (HR: 1.09 per 10 µg/m³ NO2).
12 

Attributing effects to specific air pollutants is challenging due to their high correlations with one 

another. NO2 is often considered a proxy for traffic-related air pollution, e.g. UFP, and it is unclear 

whether NO2 in itself affects the risk of COPD, though potential mechanisms underlying NO2 

exposure include inflammatory responses, with increased mucus production and development of 

airspace enlargement, which could contribute to the progressive loss of lung function.65 Unlike PM, 

the composition of NO2 is not dependent on the emission source, so similar risk estimates would be 

expected for all emission sources. We observed, however, different HRs per fixed unit of traffic and 

non-traffic NO2 (i.e. 1.08 (CI: 1.04, 1.13) and 1.29 (CI: 1.10, 1.52), respectively), thus suggesting 

NO2 may also be a proxy for other urban pollutants. 

Due to their small size, UFPs can penetrate deep into the lungs and be retained over longer period, 

and may therefore pose greater risks to human health than larger particles.16,18 However, only one 

Canadian cohort study has investigated the impact of long-term UFP exposure on COPD incidence.21 

This study found an association between UFP exposure and COPD; however, the association did not 

remain after adjusting for NO2. Similarly, a Dutch birth cohort study found UFP exposure to be 

associated with reduced lung function measurements, such as forced expiratory volume in the first 

second (FEV1) and forced vital capacity (FVC); however, these associations did not persist after 

adjusting for NO2 or PM2.5.
66 We found an association between local traffic-related UFP and COPD, 

whereas no associations were observed for non-traffic UFP. Since traffic UFP and traffic NO2 are 

strongly correlated (RPearson of 0.96), a model including both pollutants would likely be very unstable. 

It is thus not possible in the present study to separate effects of local traffic UFP and NO2, making it 

ACCEPTED M
ANUSCRIPT



11 

 

unclear whether UFP, NO2 or both are harmful in relation to COPD development. More sophisticated 

UFP exposure models need to be developed to enable separation of the effect of the two exposures in 

cohort studies.  

Carbonaceous particles are among the most toxic components of PM, potentially contributing to 

COPD through mechanisms such as oxidative stress and inflammation.67 However, in our study, we 

found only weak associations between EC and COPD, and notably, no statistically significant 

associations with non-traffic-related EC, which contrasts with the results observed for PM2.5. 

Research on long-term exposure to EC or black carbon (BC) and development of COPD is limited 

and yields contradictory results. For instance, the ELAPSE study reported consistent associations 

between BC and COPD that remained significant even after adjusting for PM2.5,
12 whereas another 

study indicated no association.14 

Our findings revealed stronger associations between air pollutants and COPD among females, 

aligning with previous studies.53,68 A possible explanation for higher HRs among women is that they 

may spend more time at home, making residential air pollution exposure estimates more accurate for 

this group. Additionally, biological differences between males and females, such as higher airway 

reactivity in women,68 have been suggested as potential explanation. 

Consistent with previous studies,68–70 we found higher risk estimates among never smokers compared 

to former and current smokers for all air pollutants, although the difference in HRs between never 

and current smokers in our study was small. Since smoking is a major factor in lung damage, any 

additional impact of air pollution on pulmonary function in smokers may be less pronounced or more 

difficult to detect.54,68 Nevertheless, we still observed positive associations among current smokers, 

aligning with a previous study that suggest air pollution exacerbates smoking-induced lung function 

decline in COPD patients.71 No associations were found among former smokers, and the reason 

remains unclear. It could be speculated that this group includes individuals who chose to quit 

smoking, indicating a greater concern for their health. This group may, therefore, be more likely to 

adopt lifestyle changes that offer some protection against the effects of air pollution on the respiratory 

system. 

For all four exposures (including total, traffic, and non-traffic contributions), we observed much 

stronger associations with COPD risk among individuals with a prior asthma diagnosis. This is likely 

due to the increased susceptibility among those with chronic respiratory conditions, such as asthma, 

to the harmful effects of air pollution.72,73 In contrast to our findings, Doiron et al. found stronger 

associations in non-asthmatic patients.68 However, this is a cross-sectional study, making it difficult 

to establish the temporal relationship between asthma and COPD diagnoses, and to confirm whether 

asthma preceded the development of COPD. Another study observed no effect modification by 

asthma status (assessed at baseline).12 

A key strength of our study was the use of two large Danish cohorts with comprehensive lifestyle 

data, including smoking, the primary risk factor for COPD. Some studies on air pollution and COPD 

did not adjust for smoking,20,21 which increases the risk for residual confounding, as indicated in our 

study, where we found that adjustment for smoking attenuated the HRs, even after individual-level 
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adjustment for key SES variables, like education and income. Moreover, the prospective design and 

access to high-quality national registers allowed for collection of detailed SES information and 

identification of COPD cases with demonstrated high positive predictive value (92%).74 

Another strength of this study was the use of advanced and robust modeling techniques with high 

temporal and spatial resolution to assess time-varying exposure for all participants, taking into 

account their complete address history. This approach included estimates of UFP and EC, which have 

been less studied in relation to COPD. Nonetheless, uncertainties remain due to limitations in the 

Danish emission inventories, particularly for UFP in earlier years. Despite this, UFP modeling 

showed robust performance, with correlation coefficients of 0.86–0.87 compared to measurement 

station data. 

To our knowledge, this is also the first study to specifically assess source-specific air pollution in 

relation to COPD development. Additionally, while the DCH cohort is predominantly living in urban 

areas, the DNHS cohort covers the entire country. Thus, the pooled study population provides a better 

representation of the air pollution levels in Denmark. Modelling residential exposures, however, may 

lead to exposure misclassification, as it does not capture exposures occurring away from the home 

address. Furthermore, we found very high correlations between some air pollutants and their source-

specific contributions, highlighting that results from epidemiological models should be interpreted 

with caution, as the assessed pollutant may serve as a proxy for other correlated risk factors.  

A limitation of our study is that COPD cases were identified through hospital-based records (i.e. 

inpatient and outpatient contacts). As a result, diagnoses made in primary care and frequent 

consultations with general practitioners, as well as medication prescriptions, were not captured. This 

approach may therefore primarily identify patients with more severe COPD and frequent 

exacerbations. The same limitation applies to asthma diagnosis used for the effect modification 

analysis. Additionally, we did not have access to spirometry or lung function data to confirm the 

COPD diagnoses or to examine lung function decline in relation to air pollution. However, Danish 

hospitals usually perform spirometry before discharging COPD patients.75 This practice, along with 

the fact that diagnoses in the Danish Patient Register are often entered by a physician, helps to 

minimize the risk of outcome misclassification.76 Recognizing the potential under-recording of 

COPD diagnoses in the Danish Patient Register,74 we expanded our COPD definition to include other 

relevant codes, such as J42 (unspecified chronic bronchitis) and J43 (emphysema), as done in other 

studies.77 Furthermore, the outcome misclassification is unlikely to be related to exposure status (i.e. 

non-differential),  which would possibly bias the estimates towards the null.  

Although our models were adjusted for a range of lifestyle and SES factors, the possibility of residual 

confounding cannot be entirely ruled out. For example, smoking information was only collected at 

baseline, and thus we lacked data on smoking status at the time of diagnosis and during follow-up. 

We also did not have data for passive smoking, smoking duration and time since smoking cessation 

for the entire cohort. Other relevant covariates, such as job-related exposures, were also not available, 

Lastly, since our study was conducted in Denmark, further research in different geographical settings 

- with varying air pollution sources, exposure degree, and genetic backgrounds - is strongly 

recommended. 
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In conclusion, this study reinforces the evidence that long-term exposure to PM and NO2 is associated 

with a higher risk of COPD. Our investigation of contributions from different sources suggests that, 

for PM2.5, the contribution from other sources than local traffic is most strongly associated with 

COPD, whereas for UFP, it is local traffic-related contributions that appear to be the most harmful. 

However, these results should be validated in future studies across different geographical and 

population settings including a broader range of air pollutants.  
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Table 1. Baseline sociodemographic characteristics and 10-year exposure levels among the study population 

(N = 159,769). 

Baseline characteristics Entire study 

population 

(N = 159,769) 

DCH cohort 

(N = 50,957) a 

DNHS cohort 

(N = 108,812) 

Sex, women [%] 52.3 52.9 52.1 

Age [mean ± SD] 63.5 ± 7.8 60.4 ± 4.4 64.9 ± 8.6 

Cohabiting status, yes [%] 77.8 76.1 78.6 

Individual income [%]    

    Low (Q1) 24.2 18.9 26.7 

    Medium (Q2-Q4) 53.5 50.1 55.2 

    High (Q5) 22.3 31.0 18.2 

Occupational status [%]    

    White collar 26.0 32.5 22.9 

    Blue collar 23.6 25.4 22.7 

    Unemployed or retired 50.4 42.1 54.4 

Highest attained education [%]    

    Mandatory education   29.3 27.3 30.2 

    Secondary or vocational education 48.3 49.3 47.8 

    Medium or long education 22.4 23.4 22.0 

Area-level factors [mean ± SD]    

    % population with low income (1st quartile) 4.7 ± 2.2 4.7 ± 2.6 4.4 ± 2.0 

    % population with only basic education 9.1 ± 2.9 9.7 ± 3.1 8.9 ± 2.8 

    % population with criminal record 0.5 ± 0.3 0.6 ± 0.3 0.4 ± 0.3 

Smoking status [%]    

    Never 39.9 36.9 41.3 

    Former 35.7 28.0 39.3 

    Current 24.4 35.1 19.4 

Smoking intensity, g/day [mean ± SD] b 15.7 ± 10.2 17.3 ± 10.3 14.3 ± 9.9 

Alcohol intake, g/day [mean ± SD] 15.8 ± 19.9 20.2 ± 21.3 13.7 ± 18.8 

Alcohol abstainers, yes [%] 7.8 2.1 10.5 

Fruit intake [%]    

    No or very low 15.2 18.7 13.5 

    Low  22.2 30.6 18.2 

    Medium 57.1 48.5 61.2 

    High 5.5 2.2 7.1 

Vegetables intake [%]    

    No or very low 19.1 12.7 22.1 

    Low  42.7 26.6 50.2 

    Medium 27.8 39.3 22.5 

    High 10.4 21.4 5.2 

Physical activity [%]    

    None or low  26.0 51.0 14.3 

    Medium 51.4 19.9 66.2 

    High 22.6 29.1 19.5 

Air pollution levels (10-y mean) [mean ± SD] c    

    Total PM2.5 (μg/m3) 11.6 ± 2.3 14.5 ± 1.4 10.3 ± 1.0 

    Traffic PM2.5 (μg/m3) d 0.6 ± 0.9 1.2 ± 1.3 0.3 ± 0.4 

    Non-traffic PM2.5 (μg/m3) e 11.0 ± 1.7 13.2 ± 0.2 10.0 ± 0.9 

    Total NO2 (μg/m3) 18.6 ± 7.7 26.3 ± 6.6 14.9 ± 5.1 
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    Traffic NO2 (μg/m3) c 6.8 ± 5.9 11.7 ± 6.3 4.5 ± 4.0 

    Non-traffic NO2 (μg/m3) d 11.8 ± 2.5 14.6 ± 1.0 10.5 ± 1.9 

    Total UFP (particles/cm3) 13,516 ± 4,753 19,097 ± 2,881 10,902 ± 2,806 

    Traffic UFP (particles/cm3) c 2,448 ± 2,245 4,815 ± 2,089 1,340 ± 1,228 

    Non-traffic UFP (particles/cm3) d 11,068 ± 2,888 14,283 ± 1,580 9,562 ± 1,993 

    Total EC (μg/m3) 0.8 ± 0.4 1.2 ± 0.5 0.6 ± 0.2 

    Traffic EC (μg/m3) c 0.3 ± 0.4 0.5 ± 0.5 0.1 ± 0.1 

    Non-traffic EC (μg/m3) d 0.6 ± 0.2 0.7 ± 0.1 0.5 ± 0.2 
a Including individuals (n = 3,743) who participated in both cohorts. 
b Among current smokers. 
c PM2.5, particulate matter with a diameter <2.5 µm; NO2, nitrogen dioxide; UFP, ultrafine particles; EC, elemental 

carbon. 
d Local traffic sources. 
e Non-traffic sources and non-local traffic sources.  
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Table 2. Associations between 10-year mean residential exposure to air pollution (per interquartile change) 

and risk for COPD (8,456 cases). Cohort study pooling data from two Danish cohorts (DCH, in Copenhagen 

and Aarhus from 2000-2017; and DNHS, nationwide from 2010/2013 - 2017). 

Air pollutant 

exposure (per IQR) a 

IQR Model 1 a, b 

HR (95% CI) 

Model 2 a, c 

HR (95% CI) 

Model 3 a, d 

HR (95% CI) 

Model 4 a, e 

HR (95% CI) 

PM2.5 (μg/m3)      

   Total 2.33 1.24 (1.18, 1.30) 1.19 (1.12, 1.25) 1.12 (1.06, 1.19) 1.11 (1.05, 1.17) 

   Traffic f 1.85 1.06 (1.05, 1.07) 1.03 (1.02, 1.05) 1.02 (1.00, 1.03) 1.01 (1.00, 1.03) 

   Non-traffic g 0.48 1.14 (1.06, 1.22) 1.20 (1.11, 1.29) 1.17 (1.08, 1.26) 1.17 (1.09, 1.26) 

      

NO2 (μg/m3)      

   Total 9.25 1.19 (1.15, 1.23) 1.15 (1.10, 1.19) 1.09 (1.05, 1.14) 1.08 (1.04, 1.13) 

   Traffic f 6.52 1.14 (1.11, 1.17) 1.10 (1.07, 1.13) 1.06 (1.03, 1.10) 1.05 (1.02, 1.09) 

   Non-traffic g 3.02 1.05 (1.02, 1.09) 1.12 (1.06, 1.17) 1.08 (1.03, 1.14) 1.08 (1.03, 1.14) 

      

UFP (particles/cm3)      

   Total 5737 1.12 (1.07, 1.18) 1.12 (1.06, 1.18) 1.06 (1.01, 1.12) 1.05 (0.99, 1.11) 

   Traffic f 2570 1.18 (1.15, 1.23) 1.13 (1.09, 1.18) 1.08 (1.04, 1.13) 1.07 (1.03, 1.12) 

   Non-traffic g 3308 0.96 (0.92, 1.01) 1.01 (0.96, 1.06) 0.99 (0.94, 1.04) 0.98 (0.94, 1.03) 

      

EC (μg/m3)      

   Total 0.34 1.06 (1.05, 1.08) 1.05 (1.03, 1.07) 1.03 (1.00, 1.05) 1.02 (1.00, 1.05) 

   Traffic f 0.22 1.07 (1.05, 1.09) 1.04 (1.02, 1.06) 1.02 (1.00, 1.04) 1.02 (1.00, 1.04) 

   Non-traffic g 0.12 0.97 (0.94, 1.00) 1.00 (0.98, 1.02) 1.00 (0.98, 1.03) 1.00 (0.98, 1.03) 
a IQR, interquartile range; CI, confidence interval; HR, hazard ratio; PM2.5, particulate matter with a diameter <2.5 

µm; NO2, nitrogen dioxide; UFP, ultrafine particles; EC, elemental carbon. 
b Adjusted for age (by design), sex and calendar-year. 
c Further adjusted for cohabiting status, education, income, occupational status, and area-level socioeconomic 

variables (i.e. percent population with low income, with only basic education, and with a criminal record). 
d Further adjusted for smoking (smoking status and intensity (g tobacco/day) measured at baseline). 
e Further adjusted for physical activity, dietary habits (i.e. intake of fruit and vegetable), and alcohol consumption (intake 

g/day and abstainers) measured at baseline. 
f  Local traffic sources. 
g Non-traffic sources and non-local traffic sources.  
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Figure captions 

Figure 1. 

 

Figure 1. Flowchart illustrating participant selection in the DCH and DNHS cohorts. 

Figure 2. 
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Figure 2. Pearson’s correlation coefficients between 10-year time-weighted averaged air pollution 

exposures for the entire study population (N=159,769). Traffic contributions refer to air pollution 

generated from local traffic sources, whereas non-traffic contributions refer to air pollution generated 

from non-traffic sources and non-local traffic sources. 

Figure 3. 
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Figure 3. Association between 10-year mean residential exposure to: A) PM2.5 (total contribution); 

B) PM2.5 (traffic contribution); C) PM2.5 (non-traffic contribution); D) NO2 (total contribution); E) 
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NO2 (traffic contribution); F) NO2 (non-traffic contribution); G) UFP (total contribution); H) UFP 

(traffic contribution); I) UFP (non-traffic contribution); J) EC (total contribution); K) EC (traffic 

contribution); L) EC (non-traffic contribution), and risk for COPD using the fully adjusted model (i.e. 

Model 4). PM2.5, particulate matter with a diameter <2.5 µm; NO2, nitrogen dioxide; UFP, ultrafine 

particles; EC, elemental carbon. The plots display the exposure range from 5th to 95th percentile. 

Traffic contributions refer to air pollution generated from local traffic sources, whereas non-traffic 

contributions refer to air pollution generated from non-traffic sources and non-local traffic sources. 

Figure 4. 

 

Figure 4. Effect modification analysis of linear associations between 10-year interquartile change 

exposure to air pollution (total contributions) and risk for COPD according to previous asthma 

diagnosis and smoking status. Risk estimates are based on the fully adjusted model (i.e. Model 4). 

PM2.5, particulate matter with a diameter <2.5 µm; NO2, nitrogen dioxide; UFP, ultrafine particles; 

EC, elemental carbon; CI, confidence interval; HR, hazard ratio. 
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